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ABSTRACT

This thesis presents a fuzzy association based data fusion algorithm for U.S. Coast
Guard Vessel Traffic Service (VTS) systems to reduce the number of redundant target
tracks displayed to vessel traffic operators. The proposed algorithm uses the Fuzzy
Clustering Means (FCM) algorithm to reduce the number of target tracks and associate
duplicate tracks by determining the degree of membefship for each target track. The
algorithm uses current sensor data and the known sensor resolutions for measurement-to-
measurement association and the selection of the most accurate sensor for tracking fused
targets. Actual vessel traffic data collected from U.S. Coast Guard VTS systems are used
for simulation and analysis of the algorithm. The results exhibit successful fusion of
correlated tracks and selection of the most accurate sensor resulting in a reduced number of

tracks displayed to the VTS operator.
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I. INTRODUCTION

The United States Coast Guard (USCG) operates and maintains the Vessel Traffic
Services (VTS) System that oversees and manages maritime vessel traffic in the harbors and
waterways of the United States. The VTS is a communications and surveillance network
designed to coordinate the safe and efficient transit of vessels in an effort to prevent
accidents and the associated loss of life and damage to property and the environment. There
are nine Vessel Traffic Centers (VTC) located throughout the country from Staten Island,
New York, to Valdez, Alaska. ‘

A common problem found in VTS systems is overlapping radar coverage of a
waterway, which gives rise to duplicate target readings of a single vessel or object. When
two or more radars sweep the same geographic area as shown in Figure 1, duplicate
target/tracks appear on the VTS operator’s display. This is caused by numerous, sometimes
uncontrollable factors such as different target viewing angles, measurement geometries, and
sensor accuracy and resolution. VTS operators must manually decide which reading is the
actual vessel, which may decrease the efficiency and ability of the operator to coordinate
traffic. The Acomplexity of this problem increases with multiple vessels transiting in close
proximity, causing the readings of one vessel to be indistinguishable from the other. A
solution to this problem is to correlate these duplicate radar tracks using fuzzy association

based data fusion algorithms.

Radar B

Vessel Seen from A
Vessel Seen from B

s

73

Radar A

Figure 1.1. Overlapping Radar Coverage




- Data fusion algorithms help determine which track the vessel belongs to and
automatically associate the duplicate tracks to one “unique” track. This frees the VTS
operator of the manual task of associating ambiguous tracks, which will overall improve the

operator’s efficiency in managing vessel traffic.

A. GOAL OF THE THESIS

The main thrust of this study is to minimize duplicate target readings and fuse them
into individual tracks for each vessel using fuzzy association based data fusion techniques.
The data fusion functionality is integrated into VTS software as shown in Figure 1.2. This
thesis will focus on an algorithm, proposed by Aziz [1,2], that optimizes the degree of
membership for each target track and selects the “best™ sensor for reporting the vessel(s) in
the area of overlapping radar coverage. The similarity measures between the reports from
different sensors and the corresponding resolutions of each sensor provide the fuzzy A
membership functions for the decision process, which determines if duplicate tracks are
from the same target. Unlike previously reported fuzzy logic data assoéiation algorithms
[3,4,5], the proposed algorithm performs data association based on the data received from
the radars and the known accuracies of the sensors. The main advantages of this algorithm
are its simplicity and efficiency in its application to dense target environments with multiple
sensors and sensor attributes. Also, this algorithm is computationally less expensive than

conventional fuzzy logic data association techniques.

Actual traffic data from USCG VTS systems are used to test the fusion algorithm.
Vessel traffic data from VTS Puget Sound, previously collected in 1996 [3,4], and data from
VTS San Francisco, collected in 1999, are utilized to test the algorithm.




GPS (ADS) Synthetic (SR) CCTV/VHF
Radar Tracks Tracks Tracks Comms

Track Data Base Manager (Tdbm)

v

Preprocessing

v

Fusion

v

Postprocessing

v

Display

Figure 1.2. Overview of Fusion Algorithm

B. THESIS OUTLINE

The remainder of the thesis is organized as follows. A description of the VTS
environment is provided in Chapter Il. The overall VTS system and the method of data
collection are discussed in this chapter. A discussion of multisensor data fusion and fuzzy
association are found in Chaptérs IIT and IV, respectively. Chapter V contains a detailed
explanation of the fusion algorithm used in this study. Chapter VI describes the simulation
process and depicts the test results. Chapter VII ends the thesis with conclusions and
suggeétions for further development. Track status codes for VTS San Francisco data are
listed in Appendix A. Appendix B contains the data capture algorithm for formatting traffic
data, and Appendix C contains the MATLAB® code developed to implement the fusion

algorithm.







II. VTS ENVIRONMENT

VTS systems monitor waterways and harbors with remote sites that broadcast vessel
traffic information to the VIC by way of transmission line or microwave links. The number
of remote sites depends upon the geographic size and traffic density of the navigable area.
For example, VTS San Francisco consists of four remote sites that monitor the San
Francisco Bay area whereas VTS Puget Sound has thirteen remote sites that monitor Puget
Sound and most of the Pacific Northwest passage. In some cases, the area of responsibility
(AOR) of one remote site may extend into another site’s AOR, resulting in redundant tracks
displayed to the VTS operator. This chapter presents an overview of the VTS system, the |
unique features of the systems in Puget Sound and San Francisco Bay, and the methods of

data collection at each VTS.

A. SYSTEM OVERVIEW

Each VTS system can be broken down into two subsystems: Remote Site
Subsytems (RSS) and a centralized Vessel Traffic Control Subsystem (VTCS). As
shown in Figure 2.1, each RSS consists of a radar unit, radar data processor, remote site
processor, video cameras, video compressors, and a VHF radio system. The models and
types of radar unit vary for each remote site, depending upon the range and power
required to track vessels. Each remote site has two radar ﬁnits for backup purposes in the
event one unit fails. The radar data processor processes raw radar data to generate radar
tracks that are sent to the VTCS. Sensor level fusion and track updates are also
conducted at the radar data procéssor. The remote site processor provides an interface for
the operator at the VTCS to control and monitor the RSS. This processor routes control
signals from the VTCS to the RSS to change the position or zoom feature of the vidéo
camera or to change the power setting of the radar. The video cameras are typically
black and white cameras with simple pan and zoom capabilities. The VHF radio system
of the RSS is used by the VTS to broadcast vessel traffic information and to
communicate with vessel pilots. Communication links between the RSS and the VTCS

are either T1 transmission lines or microwave links.

5




Video VHF
Camera Antenna

VHF

. Radar )
Tranceivers

" Processor

Video
Compressor

Remote
Site Processor

T1 Lines/Microwave Links

Figure 2.1. Remote Site Subsystem (RSS)

The VTCS is located at the VTS and consists of sensor data processors, audio/video
routing systems, database Pprocessors, and operator display processors, as shown in Figure
2.2. The sensor data processor receives all incoming sensor data from each RSS. Audio and
video signals sent from the cameras and VHF radio system are processed through the A7V
routing system for presentation to the VTS operator and/or recording on audio and video
tape. The database processor records traffic information from the sensor data processor and
archives the information for historical record. The operator display processor allows the
VTS operator to setup and control remote sites and to select specific data, or target tracks for
display. Vessel traffic information, video images, and radio traffic are available to the VTS

operator at the display console.
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Figure 2.2. Vessel Traffic Control Subsystem (VTCS)

Each of the nine USCG VTS systems is structured with the remote and centralized
subsystems. Features unique to each VTS are the number of remote sites and the types of
sensors used to monitor vessel traffic. Two systems researched for this study are VTS Puget

Sound and VTS San Francisco.

1. VTS Puget Sound

VTS Puget Sound monitors approximately 2,900 square miles of navigable
waterways from the ocean shores of Washington State to as far inland as Commencement
Bay. It consists of thirteen radar sites, fourteen communicatidn sites, and three closed
circuit television (CCTV) camera sites. Figure 2.2 shows VTS Puget Sound’s area of

responsibility.




All thirteen radar sites at VTS Puget Sound use the AIL FPS-109 search radar, and
the locations of the_irr sites are listed in Table 2.1. The known range and bearing resolutions
for the AIL radar are 0.375% and +0.35 degrees, respectively. Range resolution in yards is
determined by multiplying the range resolution in percentage by the distance to the target.
For example, a vessel 12 NM away produces a range resolution of 0.045 NM or 91.14
yards, i.e., the vessel has a range error of 91.14 yards. The farther away the vessel is from

the radar, the less accurate the track is at the operator’s display.




Radar Site Site Location
Cape Flattery 48°23°14" N
. 124°42°51" W
Pearson Creek 48°15°41" N
124° 14’ 16" W
Port Angeles ’ 48°08°24.5" N
123°24°37.5" W

Shannon Point 48°30°32.5" N
122°40°56" W

Village Point 48°43’14" N
122°42°46" W

Smith Island 48°19°13"N
122° 50°29" W

Whidbey Island 48°19°00" N
122°41°53" W

Point Wilson 48°08’37" N
122°45° 14" W

Point No Point 47°54°43" N
122°31°34" W

West Point 47°39°44" N
122°25°58" W

Pier 36 47°35°24" N
122°20°58" W

Ruston 47° 18°09" N
122°20°58" W

Pt Robinson . 47°23°16" N

' 122°22°29" W

Table 2.1. VTS Puget Sound Radar Sites

2. VTS San Francisco

VTS San Francisco covers 133 miles of waterway covering the Offshore Sector, all
approaches into San Francisco Bay, the East and San Pablo Bay area, and the Sacramento
and San Joaquin River Delta, which encompasses the Sacramento and Stockton areas. VTS
San Francisco consists of four remote radar sites, four communication sites, and five CCTV

camera sites. Figure 2.4 shows VTS San Francisco’s area of responsibility.




STOEKTON

Figure 2.4. VTS San Francisco Area of Responsibility [7]

VTS San Francisco uses Raytheon 1342/SPS-64 radars for their Point Bonita and
Yerba Buena Island sites and Furuno FR-8050D radars at their Mare Island and Point San
Pablo radar sites. The Raytheon radar has a range resolution of 0.3% and a bearing
resolution of £0.3 degree while the Furuno radar is known to have a range resolution of
0.9% and a bearing resolution of 1.0 degree. Table 2.2 shows the locations of the VTS San

Francisco radar sites.

Radar Site Site Location

Yerba Buena Island 37°48°34.71407 "N
122°21°55.31181"W

Point Bonita 37°49°12.08487" N
122°31°51.18769" W

Mare Island 38°04°10.23008" N
122° 15°04.83339" W

Point San Pablo 37°57°43.55515" N
122°25°24.41049 W

Table 2.2. VTS San Francisco Radar Sites
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B. TRACK DATA

At the operator display console, all vessels in a given remote site’s AOR are
displayed and depicted with the icon color designated for that site. For example, in the VTS
San Francisco, target tracks colored “blue” represent reports from the Mare Island remote
site, and “white” target tracks represent reports from the Point San Pablo remote site. In an
area of overlapping radar coverage, both a white and a blue track are displayed for each
known target. The tracks displayed to the operator are typically divided into three
categories: radar tracks, automated dependent surveillance (ADS) tracks, and standard route
(SR) trac_ks.

Radar tracks are the primary source of vessel data to the operator. Radar tracks are
independently fused at the sensor level by the radar processor using a sequence of pairing,
developing, and maturing operations [5]. Once a vessel is declared mature, the radar
processor reports the vessel to the VI'CS as an independent target. The report for a radar
track continues until the target is either dropped by the operator or goes beyond the fange of
the sensor. Radar track reports are transmitted in run length encoded format from the RSS
to the VTC and further processed to extract features or attributes (latitude, longitude, size, |
and time) for the database processor and the operator display console.

Automated dependent surveillance (ADS) tracks provide GPS and DGPS tracking
capabilities to the VTS system. Vessels participating with ADS transmit their GPS or
DGPS coordinates to the VTC via satellite or digital selective calling, which are then
tracked and recorded by the database processor. ADS reports are not updated as frequently
as radar track reports; however, they require minimal processing since the data are already
formatted with latitude, longitude, time, course, and speed attributes.

Standard route tracks are synthetic tracks generated by the VTS system. SR tracks
represent an estimated position (EP) of the vessel. SR tracks are generated once a target
track is lost on a particular vessel. For instance, once a vessel leaves a site's AOR or if a
site's sensor malfunctions, a SR &ack is displayed for that vessel. SR tracks are normally
multi-segmented predefined routes fixed to the direction of the waterway. Vessels with
predefined SR tracks typically transit the area frequently such as ferries. The SR track is

terminated once the original or new sensor detects and tracks the target vessel. These tracks

11




inherit the same attribute format from the last radar or ADS track and require minimal
format processing.

Each type of track is preprocessed into a format suitable for viewing and storing the
path history of a vessel. The path history is recorded and archived in ASCI format and

provides the essential attributes for the proposed fusion algorithm.

C. DATA COLLECTION

The use of actual vessel traffic data in this study validates the fusion algorithm’s
ability to handle “real-life” overlapping radar coverage scenarios and makes the algorithm
suitable for use in existing VTS systems. Data sets were obtained from VTS Puget Sound '

and VTS San Francisco, which provided a variety of overlapping radar coverage scenarios.

1. VTS Puget Sound Data

Vessel traffic data were collected at VTS Puget Sound by the Inter-National
Research Institute (INRI) and the USCG while conducting ADS trials during September 11-
12, 1996. Overlapping radar coverage scenarios were collected and used in previous fusion
algorithm studies [3,4]. The scenarios were found useful for implementation of the
algorithm proposed in this study. The most evident area of overlapping radar coverage was
in Puget Sound and Elliot Bay, as shown in Figure 2.5. This area has a high density of ferry
traffic that transits from the downtown Seattle érea to Winslow and Bremerton through
Elliot Bay and Puget Sound. The two radars covering this area are the West Point radar,
located west of Fort Lawton, and the Pier 36 radar, located at the northeastern point of
Harbor Island.
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Figure 2.5. Puget Sound and Elliot Bay

The tracks of vessels transiting through this area were stored as ASCII files in

comma delimited format. A sample of the contents of a recorded track file is listed below:

DAVID FOSS,120996230119,Radar,356,3,41.0,8.2,4735.20,-12225.23,252,0
UNK-4410,120996230119,Radar,409,3,91.3,17.6,4736.45,-12228.34,0,0
WALLA WALLA,120996230122,Radar,406,3,236.4,7.9,4736.08,-12223.72,439,0
SKAGIT, 120996230122, Radar,405,3,48.5,13.9,4735.35,-12225.88,102,0 ’
SPOKANE_ADS,120996230034,ADS,227,3669994520,92.0,17.9,4736.39,-12228.66,0,0
SPOKANE_ADS,120996230118,ADS,227,3669994520,89.4,18.4,4736.38,-12228.34,0,0
SPOKANE_ADS,120996230118,ADS,227,3669994520,89.4,18.4,4736.38,-12228.34,0,0
UNK-4409,120996230125,Radar,408,3,281.7,19.0,4736.78,-12225.02,0,0
DAVID FOSS,120996230125,Radar,356,3,42.4,8.2,4735.21,-12225.22,252,0
UNK-4411,120996230121,Radar,410,1,93.4,18.2,4736.45,-12228.16,0,0
UNK-4410,120996230125,Radar,409,3,92.1,17.7,4736.44,-12228.29,0,0

Each line in the above listing represents a reported track from a sensor sweep.

The tracks are listed in time-sequence, and each line provides information about that

track such as vessel name, position, sensor type, etc. Table 2.3 lists the specific features

presented in each line.

2

10

11

ccce

DDMMYY | AAA

hhmmss

ccce

ccce

XX

X.X

ddmm.mm

ddmm.mm

size

x <CR>

Table 2.3. VTS Puget Sound Vessel Traffic Data Format

13




Column 1 contains the vessel’s name in ASCII characters. If a vessel's name has
not been determined, the vessel is referred to as unknown (UNK-XXXX). Column 2 is
the Universal Time Code (UTC), which is the time of track position. Column 3 is the
sensor type, which indicates whether the track is a radar, ADS, or SR track. Column 4 is
the designated track ID number; each individual vessel is designated a unique ID number.
Column 5 shows which sensor number is reporting the track. Column 6 shows the track’s
true course (in degrees), and column 7 indicates the speed (in knots over ground).
Columns 8 and 9 are the track’s latitude and longitude coordinates in degrees and
minutes, respectively. Column 10 shows the calculated size of the vessel, and column 11

represents the quality of the track.

2. VTS San Francisco Data

Actual vessel traffic data were collected during the month of March 1999 at VTS
San Francisco. Thé most evident area of overlapping radar coverage was the San Pablo Bay
area, which consists of the Pinole Shoal Channel and the San Pablo Strait Channel as shown
in Figure 2.6. The Mare Island and Point San Pablo radar sensors overlap this area, and

vessel traffic data were collected from these sites.

Figure 2.6. San Pablo Bay [7]
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The method of data collection was different from that of VTS Puget Sound. Instead
of using the data available from each sensor sweep at the display processor, vessel path
histories from the archived database were used. Duplicate tracks are displayed at the
operator’s console,» but only the sensor track designated by the operator is recorded as the
vessel’s path history and archived in the database. The other sensor track, the redundant
track, is not archived. To obtain the data needed for the proposed algorithm, the redundant
track was recorded as a “test” target to complement the path history of the actual vessel.
VTS San Francisco personnel observed vessel traffic in this area and recorded track pairs for
the purpose of this thesis.

Data were recorded in ASCII format with each line representing a track’s position
for each sensor sweep. A sample of the contents of a recorded duplicate track scenario is

listed below:

-122.36105 38.036331
-122.37534 38.029651
-122.38519 38.022498
-122.38805 38.020695
-122.39846 38.013381
-122.40616 38.010261

03/10/99-2253 SU
03/10/99-2256 SU
03/10/99-2259 RR
03/10/99-2300 SU
03/10/99-2303 SU
03/10/99-2307 SU

MRI - ANNA FOSS
MRI - ANNA FOSS
MRI - ANNA FOSS
MRI - ANNA FOSS
MRI - ANNA FOSS
MRI - ANNA FOSS

PSP - TEST VESSEL  03/10/99-2253 ™ -122.3457 38.033465
PSP - TEST VESSEL  03/10/99-2253 MR -122.36041 38.035842
PSP - TEST VESSEL  03/10/99-2256 SU -122.37355 38.028171
PSP - TEST VESSEL  03/10/99-2300 SU -122.38605 38.020973
PSP - TEST VESSEL  03/10/99-2303 SU -122.39651 38.013725
PSP - TEST VESSEL  03/10/99-2307 SuU -122.40582 38.005948

Each of the lines above represents a reported track from a sensor sweep. Sensor site
is indicated in the first column (MRI = Mare Island, PSP = Point San Pablo) followed by the
" vessel’s name. The second column indicates the date and time of track followed by the
status of the track. Track status codes are defined in Appendix A. The last column reports
the longitude and latitude positions of the vessel in degrees.

The manual swapping of one sensor to another by the VTS operator in order to
maintain the path history of a vessel is a task the proposed algorithm intends to automate.
The algorithm will take the observed tracks from each sensor and the sensor resolutions of

each site to determine the optimum sensor to track and record the path history of the vessel.
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The next chapter discusses the concepts of multisensor/multitarget (MSMT) tracking

systems and data fusion.
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ITI. MULTISENSOR DATA FUSION

Multisensor data fusion techniques seek to cornbihe data from multiple sensors to
perform inferences that may be impossible to achieve based on data from a single sensor
alone. Data may be in the form of positional coordinates (latitude and longitude), angular
data (azimuth and elevation), or object identity declarations (such as Interrogation Friend or
Foe (IFF)). The inferences so resolved from multisensor data fusion result in determination
of a position or establishment of an identity.

Data fusion is beneficial for MSMT tracking systems. The combined data from
multiple sensors ensures a more robust tracking éystem in the event a sensor fails. It also
enables improved spatial coverage and detection capabilities compared to single sensor
systems. For the VTS system, data fusion reduces redundant tracks displayed to the
operator and determines the optimum sensor to track vessels. This chapter discusses the
architectural model of the data fusion pfocess used in tracking systems and the concepts of

the positional fusion algorithm.

A. FUSION ARCHITECTURE

There are three basic types of data fusion architectures: centralized, autonomous, and
hybrid. The type of architecture depends upon the complexity of the sensor and the
processing needed to ensure the quality of estimates of the feature vectbrs [8]. Centralized
fusion is the simplest of the three in terms of expense and computational efficiency. It
requires only raw data from the sensors to be sent to the fusion center for processing, which
results in minimal or no information loss. Autonomous and hybrid fusion architectures
extract certain features from the raw data and provide sensor-level inferences of the data.
The result is information loss due to the local optimization of the data from the sensors, prior
to the multiple sensor fusion process.

VTS systems perform feature extraction at the sensor site in obtaining the range and
bearing information of the target prior to transmission to the sensor data processors. The
proposed fusion algorithm, presented in Chapter V, assumes that sensor level fusion is

applied correctly at the remote sites; therefore, track information received at the VTC from
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the sensor sites is treated as raw data, and central level fusion is applied. This simplifies the

VTS fusion architecture into a centralized model as shown in Figure 3.1.

-~ N Raw
Sensor Data Data .
) . ————p Fusion |—pState Vector
B Association
=

Figure 3.1. Centralized Fusion Model

In centralized fusion architectures, data from multiple sensors are used to estimate a
target’s position, velocity, and other attributes, or determinp its identity [9]. The raw data
from each sensor are associated using a data association process and then fused using
physical models, pattern recognition techniques, or estimation techniques. The result is a
state vector that establishes an identity declaration, such as an estimate of a position, or

-another attribute. In the VTS system, the raw data are the duplicate target tracks sent from
aremote site. The fusion algorithm is applied to the track data, and the resulting state vector

represents a unique track.

B. POSITIONAL FUSION

This study focuses on a centralized fusion model to reduce the redundant tracks in
areas of overlapping radar coverage. An appropriate technique for the VTS system is
positional fusion, which takes positional data from multiple sensors and infers an estimated
or optimum position.

Positional fusion uses a combination of assigned thresholds and assumptions about
the statistics of the noise processes to map observed data into a state vector, i.e., an
independent set of variables such as latitude and longitude. This type of fusion provides an
estimate of the state vector that best fits the observed data. Data from the sensors are

preprocessed within a fusion system to perform data alignment, which transforms incoming
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data into reference coordinates. After data alignment, two functions are performed:
parametric association and state vector estimation. Figure 3.2 shows the flow diagram of '

positional fusion.

Data |
Alignment |

Data —) p i Positional
Alignment arametric . . — ositio
Association Estimation Estimation

Data [ —
Alignment i

Figure 3.2. Positional Fusion

1. Sensor

Sensors for positional fusion algorithms provide spatial and temporal data for each
target detected during a sensor scan. Sensors may be of different types but must convey
information that can be understood by the fusion algorithm. A target’s range and azimuth
information from a radar sensor is preprocessed into positional coordinates and bearing from
the sensor’s known location. GPS and DGPS sensors also report the positional coordinates
of a target. Sensor resolutions that must be taken into account during the association
process. Chapter V describes how the sensor resolutions are utilized in the proposed

algorithm.

2. Data Alignment

Data alignment orients the sensor data to a common spatial and temporal reference.
This allows direct comparison of the data from each sensor for the association process. The
spatial reference for the data in positional fusion algorithms depends upon the coordinate
system in use. The spherical coordinate system of latitude and longitude in degrees is used
in the VTS system. Temporal reference is achieved by ali gning the sensor data to points in

time. In real-time systems, data are referenced with respect to the current scan.

19




3. Data Association

Data or parametric association links observations from multiple sensors to individual
targets by associating observations to other observations or existing tracks. This is
accomplished by defining a measure of association that quantities the closeness between
observation pairs. Association measures include correlation coefficients, distance measures,
association coefficients, and probabilistic similarity measures. After an association measure
is computed to determine the closeness between the two observations, association strategy
or logic is applied to determine whether to declare the duplicate observations as one or more
targets. Gating techniques establish boundaries or limits to provide an initial determination
of whether the two observations could be physically related. In the VTS system, the
resolution of the sensors would establish the bound or degree of uncertainty in which targets
are duplicated or not. Figure 3.3 provides an example of positional association based on the

uncertainty of the sensor.

Geographical
Uncertainty
Ellipse

“Known” lpcation of Target A

ngwn’ location of Target B

Latitude

‘“Unknown”
X  Target

v

Longitude

Figure 3.3. Positional Association and Sensor Uncertainties

In Figure 3.3, a new radar observation of “X” may fall within the uncertainty ellipse
of Target A or B, both A and B, or neither A nor B. The geographical uncertainty ellipse
around each target represents the area of possible error or range resolution of the sensor.
From this observation, the following inferences can be made: X is associated with Target A;
X is associated with Target B; X is neither associated With Targets A nor B; or X is a false
target and should be ignored.
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Given observation X and the known positions of Targets A and B, associations are
formed that quantify the similarity between the observation and known position of the
target. This similarity measure is then compared against a certain limit or a priori threshold.
Associations are made using assignment logic, which may consist of hard or soft decision
rules based on the similarity measures and thresholds. Chapter IV discusses the association
process using assignment logic. After assigning the observation to the target, the fusion
process then uses estimation techniques to fuse or combine the data to estimate the target’s

position.

4. Estimation

After the observations have been sorted by the association function, estimation
techniques fuse the data. Estimation techniques determine the value of a state vector that
best fits the observed data. Examples of estimation techniques are the least squares,
weighted least squares, maximum likelihood, and minimum variance methods [10].
Estimation may also be performed using a track selection approach in which the most
accurate sensor is chosen to track a vessel in a multisensor environment. An advantage of
this form of estimation is that no composite or fused estimate is computed, cutting down on
processing time and costs. The proposed algorithm uses this type of approach to establish |
the optimum target track among redundant reports. Chapter V discusses how the optimum

sensor is established in the fusion algorithm.

In summary, multisensor data fusion is used to minimize the number of redundant
target tracks displayed to VTS operators. In a centralized architecture, raw sensor data is
sent to the fusion center for association and estimation. By aligning the input data from the
sensors and associating them using similarity measures and threshold comparisons, fusion is
performed to provide an estimate of a vessel’s position as well as to determine the most

reliable sensor for tracking.
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IV. FUZZY ASSOCIATION

The proposed algorithm uses a fuzzy association technique to determine the
optimum sensor to track targets in areas of overlapping radar coverage. The fuzzy
association approach is preferred over traditional Boolean logic processes because it
considers partial relationships or degrees of truth to the observed data, rather than the
stringent relationship of “true” or “false”. In a multisensor environment, a fuzzy
association approach is suitable for determining the relationship between multiple track
pairs. Instead of resolving track pairs as simply being correlated or non-correlated, they can
be categorized into degrees of membership by quantifying the level of their correlation. |
From these degrees of correlation, a more informed assessment can be made whether or not
to fuse the track pairs.

Figure 4.1 shows the flow diagram of the fuzzy association process. Data are sent
from to the fusion center, where the degree of membership is assigned to the similarity
measures of the data. The membership values are then applied to fuzzy association rules in
which a decision is made about the data. This decision is then defuzzified to indicate fusion
for the data received. This chapter discusses the advantages of using fuzzy logic for the
association process, the design and application of membership functions, and the fuzzy

association rules to establish fusion for the received data.

Daia Membership Fuzzy yFusion

Function Association

Figure 4.1. Fuzzy Association Process
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A. FUZZY LOGIC

In classical set theory, an element may “belong” or “not belong” to a particular set.
This can be described by the characteristic function )4 of a set A in the universe of discourse
U in which [11]
L xe A,

Xa) = {O,xe A @

This characteristic function has only two possible values: the statement x belongs to A is
either “true” (a value of one) or “false” (a value of zero), for each element in U. The set A is
referred to as a crisp set. |

In fuzzy set theory or fuzzy logic, the set A can be extended into a fuzzy set. An
element may still “belong” or “not belong™ to a particular set, but may fall into categories in
which an element belongs to the set as measured by a membership value. Descriptive or
“fuzzy” categories such as a lor, aZmost, like, or somewhat represent how much or to what
degree the element is part of the set. The relationship that an element makes with data can
be modeled as the membership function £, which represents the degreé of truth in the

statement x belongs to A:
0<su,(x)<1, foranyx e U. 2)

The difference between crisp and fuzzy logic theories is that the latter offers more
information that can be used to derive a decision based on the data given to a fusion
algorithm. In a multisensor tracking system, target tracks reported from different sensors
have varying measures of similarity to each other. Using the data association example in
Chapter ITI, Section B.3, the distance from Target A to Observation X provides a
membership function for associating Observation X to Target A. The membership value
assigned to the distance measure is a weight added to the decision-making in the association
process. A membership value close to 1 indicates a strong correlation between X and A,
and association between the two is heavily considered. A value at or near zero indicates a

weak similarity, and association can be ignored.
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Fuzzy logic offers several features that make it an excellent choice for data
association techniques [12]. It is robust and does not require noise-free inputs from the
sensors. The logic rules that govern the association are user-defined and can be refined for
optimum performance. The system using fuzzy logic is also sensor dependent; however the
sensors can be inexpensive and low in complexity. The leading advantage in using fuzzy

t

logic over crisp logic is that fuzzy logic requires a smaller number of rule-based operations.

B. MEMBERSHIP FUNCTIONS

Membership functions are critical elements in the association process as they
determiné the degree of similarity and hence how the associations between elements and
sets are made. As stated in Equati.on (2), membership functions take values in the range of 0
to 1, inclusive. A value of 1 represents a strong degree of truth, and a value of 0 represents a
weak degree of truth. Membership values between zero and one are assigned either
subjectively or from past evaluations and experiences. To illustrate the subjectivity in
designing a membership function, the characteristic function for a crisp set shown in Figure

4.2 is compared to a membership function ofa fuzzy set in Figure 4.3.

x<A A<x

Figure 4.2. Characteristic Function for a Crisp Set
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A

Figure 4.3. Membership Function for a Fuzzy Set

Membership functions can be depicted as graphical representations of the degree of
truth of the elements to a set. As seen in the crisp set function, only the membership value
of one can be applied to the element X if it is within the set A. In Figure 4.3, the
membership value may range from zero to one depending on where the element X resides in
A. The shape of the membership function is also subjective and different for each type of
element. Figure 4.4 shows two membership functions used in previous VTS fusion
algorithms for positional and course differences between target track pairs in a region of

overlapping radar coverage [3,4].

10_ 1.0

. ]
.‘é 08l -% 0.8

= =

- =
= 1 = 1

e 06 e 06

= —

4 &

2 o4 2 04

£ £

*] Q

= 024 = 021

L i

_510 0 510 Course
de grees Difference

0 560 [0 éo() Position
meters Difference

Figure 4.4. Membership Functions for Position and Course

To illustrate how membership functions are applied to positional differences
between track pairs, the difference in latitude from one track to the latitude from another

track is measured. The difference is measured in meters, and the membership value is
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computed. If the difference is within 500 meters, a membership value from zero to one is
assigned. The smaller the difference, the greater the degree of membership. For differences
beyond 500 meters, it is inferred that the track pairs are separate targets. Once membership

values are obtained for the data set, the association process begins.

C. FUZZY ASSOCIATION

Fuzzy association is ideal for multisensor tracking systems in that several
associations can be made from the data received from each sensor. Fuzzy association uses
IF-THEN-ELSE rules to establish association based on the membership values assigned to
the similarity measure of the data and predetermined thresholds, &z IF-THEN rules are
established so that if a membership value is greater than the threshold, the result is

association, or else association is avoided:

IF u,(x)>a,THEN Association
ELSE No Association

After associating the input membership values, the membership function is
defuzzified to obtain a crisp output. In control systems, this output provides feedback to the
system. In multisensor tracking systems, the output is a decision whether or not the track
pairs represent the same vessel. If the output indicates that the tracks belong to the same
vessel, the fusion process then estimates the optimum sensor track. If the output indicates
that the tracks belong to separate vessels, then the fusion algorithm repeats itself for the next
. set of data.

The fuzzy associative process for fusing redundant tracks is shown in Figure 4.5.
Attribute data in the form of latitude, longitude, and course from one sensor are compared
against the attribute data from another sensor to form a similarity measure. Once all of the
assessed attributes for the track pairs have been assigned membership values, they are then
checked against a designated threshold for that attribute. The threshold is selected by the
operator or determined by the known resolutions of the sensor. If a threshold is not

exceeded, the association for the track pairs fails, and further checks are stopped. If all
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values exceed the assigned threshold, an association is made, indicated by a binary output of
“1” from the defuzzifier, and the two target tracks are then fused to become one unique track

displayed at the operator’s console.

IF latitude close
THEN same vessel

Latitud
::lata e—P Emmm— Hype> O2
: Hyge

AND
IF longitude close
THEN same vessel
Longitude
data —> /\ ——>  |i,,,;> 07 == BINARY
Hiqng 1 OUTPUT
Same
Vessel
@
AND or
IF course close Different
THEN same vessel ) Vessel
()]
Course ¢
data uc"u'se u’course> (x')

Figure 4.5. Fuzzy Associative System

Previous data association algorithms were successful in applying this fuzzy
association technique to simulated and “real-life” target track data [3,4]; however, the
membership function design was static and needed to be validated or optimized. An
adaptive membership function that is shaped by the current statistics of the data would lead
to a more accurate decision process. bOne such method that uses adaptivé membership
functions and relies on the current data is the fuzzy clustering means algorithm. The next
chapter discusses the fuzzy clustering means algorithm and its application to the VTS

environment.
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V. FUZZY CLUSTERING MEANS ALGORITHM

The fuzzy clustering means (FCM) algorithm described in this chapter is used to
first fuse the tracks based on the association of measurements and then select the sensor with
the best measurement accuracy [1,2]. Only the tracks associated with the “best” sensor are

displayed, resulting in a reduced number of tracks displayed to the VTS operator.

The FCM algorithm classifies data into groups or clusters by producing a degree of
membership for each data point in the clusters. Data association is determined by selecting
the highest degree of membership for each data-cluster pair. Because association is made
among the membership values of the data in clusters and not with pre-selected threshold
values, the FCM algorithm has fewer computations and is therefore simpler and less
complex than traditional fuzzy association based algorithms. This chapter discusses the
background for using the proposed fusion algorithm, the fuzzy clustering means algorithm
for measurement-to-cluster assignment, and the FCM algorithm applied to the VTS

environment for sensor-to-track association.

A. BACKGROUND

As discussed in Chapter IV, the design of membership functions for a fuzzy
associative system is subjective and requires categorizing data elements into deé,criptive or
linguistic \}adables, such as very low, low, medium, high, and very high. Increasing the
number of linguistié variables for data elements increases the number of categories for the
data. This results in an increase in precision. As the level of precision increases, the number .
of IF-THEN rules increases for the association process. The computational cost for optimal
solutions becomes expensive as the number of measurements and variables increase. The

required number of IF-THEN rules is given by
N, = (k) 3)

where [ is the number of linguistic variables, ¢ is the number of measurements or sensors,

29




and s is the number of input variables. For example, to solve a tracking problem of
associating six measurements with six tracks using only three input variables (latitude,
longitude, and course) and five linguistic variables, the required number of IF-THEN rules
is 27,000. Multisensor tracking systems using traditional fuzzy association are thus
computationally expensive for tracking multiple targets with multiple sensors.

To reduce cost as well as the complexity for data association in MSMT
environments, suboptimal solutions are used [1,2]. Suboptimal solutions do not require the -
precision of individual IF-THEN rules for every descriptive variable and measurement. To
minimize the complexity of associating multiple tracks to multiple targets, measurements
are processed into clusters and given a degree of membership within the cluster. This
approach is called fuzzy clustering. The prdposed algorithm uses fuzzy clustering to provide

a suboptimal but computationally less expensive solution.

B. FUZZY CLUSTERING MEANS ALGORITHM

The FCM algorithm performs measurement-to-cluster association. Measurements
are classified into clusters and compared to the cluster centers. The FCM algorithm consists
of three main parts: calculating the similarity measures of the data, determining the fuzzy
membership functions from the similarity measures, and applying the fuzzy rule system to

the membership values for association. Figure 5.1 shows the diagram of the FCM

algorithm.
s . . Fuzzy Track Fusion/
Similarity Membership
Data == Neasures [P Values >  Rulesand ey Sensor
Decisions Selection
Figure 5.1. FCM Algorithm Diagram
1. Similarity Measures

The similarity measure dy is calculated from measurement x; and the cluster center
v; for data point & and cluster i; it is the inner product induced norm between the two values

and is represented as
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dy = ”xk -~V " @

Cluster centers are either predetermined or calculated from given membership
values of the data. For positional fusion algorithms, cluster centers are the known
geographical location of targets and are used as reference points for current or future
measurements. Since the membership values are calculated from the measurements, the

cluster centers are assumed fixed in this algorithm.

2. Membership Values

In fuzzy clustering, data point x; is allowed to have a partial membership in more
than one cluster. Let the partial membership value y; represent the degree of membership
of data point x; in fuzzy cluster i. Given the number of clusters ¢ and the number of data

points n, the partial membership function is expressed as

u,€[01), 1Si<c,1<k<n, G) -

where the sum of all partial memberships for data point k in every cluster i equals 1

Sy, =1 Vi, ©)

i=1

and the sum of all partial memberships for all data points in cluster i is between 0 and n
0< Yty <n Vi (7
k=1 ’

Membership values are calculated using the similarity measures with respect to a
fuzzification constant m. This constant reduces the influence of noise when computing the
degree of membership or cluster centers. Given a cluster center v;, the membership value for

each data point k in cluster group i with respect to all cluster groups is defined as
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My = .
s

Vi, k. ®)

J=

Once all partial membership values have been calculated, they are arranged in a partition

matrix

By Ky oo My,

U= lu:Zl ﬂ.22 '. ”'271 i (9)

:ucl Iui2 ﬂcn

where the columns of U represent the data points, and rows represent measured data points.

3. ' Association

The FCM algorithm performs measurement-to-cluster association by selecting the
maximum membership value for each measurement-to-cluster pair. The approach consists

of the following steps for » measurements received at time index or scan #:

1. Apply the FCM algorithm to find the partition matrix U. This matrix contains
the membership values among all measurements and all targets.

2. Find the measurement-to-cluster pair with maximum membership value and
assign measurement k to track i. .

3. Remove the measurement-to-cluster pair identified in Step 2 (column k and row
i) and obtain a reduced matrix.

4. Repeat Steps 2 and 3 for each of the remaining clusters until all » measurements

are assigned to ¢ existing clusters.

Once all measurements are assigned to a cluster, the process is repeated for the next sensor

scan [1,2].
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Consider an example of three targets (c = 3) all simultaneously scanned at time
index ¢ with fixed cluster centers v;, v,, and v; and measurements x;, x», and x3. Using
Equations (4) and (8), the elements of the partition matrix U can be determined. For

illustration, let us consider the following partition matrix:

Wy My, My 032 0.65 0.22
U=\, My Hy|=[044 017 023 (10)
My My Mg 0.24 0.18 0.55

The max [g4] is 12 = 0.65, and measurement 2 is assigned to cluster 1. The matrix is then

reduced to

U _|Ha B 044 0.23 a1
rediced Iy My | 024 055

where the max [Ui] Of Useducea 1S 433 = 0.55, and measurement 3 is assigned to cluster 3. The

matrix is then reduced to the last membership value where
Ureducedz = [/’l21] = [044]’ (12)

and the final assignment is measurement 1 to cluster 2.

C. FCM ALGORITHM IN THE VTS ENVIRONMENT

The FCM algorithm is modified for application to the VIS environment. Instéad of
measurement-to-cluster association, the VTS algorithm performs measurement-to-
measurement association as well as the sensor selection for reducing duplicate tracks. The
cluster centers v; are unknown in this case, and association is performed using only the
received data and sensor errors at scan ¢.  This section discusses how the FCM algorithm is

applied to the VTS environment to fuse the measurements and select the “best” sensor.
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1. Similarity Measures

The total number of measurements » from sensor i are compared to measurements

from sensor k. Measurement x; is a report vector with p attributes from sensor 7:

attribute 1

attribute 2

X, = L i=12,...,n (13)

1

attribute p

Attributes from the sensors can be the latitude and longimde of the vessel, the course and
speed calculated at the sensor level, or any combination of data that the VTS operator is
required to measure. Chapter II lists the type of attributes that can be obtained from the
sensor: latitude, longitude, true course, speed, UTC, track ID number, etc.

Since the similarity measure between x; and x; is zero, sensor errors are used to
determine d;;. Sensor errors provide a threshold to compare the similarity measures between
reports. This threshold is as an uncertainty ellipse due to errors contributed by the sensor
under consideration. The vector e; represents the corresponding sensor errors of the

attributes in x;:

2 .
e, = : , 1=1,2,...,n. (14)

error p

Examples of sensor errors are the position and course errors calculated from the radar’s
known range and bearing resolutions. For example, position error is due to the inaccuracies
in the estimation of target location by the radar processor. The bearing resolution of a radar
is used as the threshold for comparing the course differences between reports. Having the
known sensor errors and the attribute differences between reports, the similarity measure dj,

between reports i and & and for the sensor attribute errors determined as follows:
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dik_{ le.f, oi=k Lk=12,..,n 15)

An nxn matrix containing the similarity measures of the sensor errors (along the diagonal

elements) and the similarity measures of the measurements is formed:

e e -nf o mex)] [dn dn e da
r 2 2
D= sz-_xlll ”e%” [, —.x"” = dfl d:”» d:z" . (16)
e == - el | L de o da

2. Fuzzy Membership Calculations

Membership values g are calculated using Equation (8), and the partition matrix U
as in Equation (9) is formed. The diagonal elements y; represent the membership values of
the sensor errors of sensor i, and the off-diagonal elements 4 represent the membership

values of the similarity measures between reports x; and xx.

3. Fuzzy Rules and Decision System

After applying the FCM algorithm to obtain membership values for all
measurements and sensor errors, the highest membership value indicates the appropriate
association of measurement i to measurement k. The association is made using a decision
rule that compares the membership value g to that of the sensor error £;. This association
indicates whether the tracks are from the same target or separate entities. '

The decision rule H;is based on the elements partition matrix U for each sensor i:

i

{l’if By > 1y a7
0,if My < M-
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A binary decision of 1 means that measurements i and k are within the boundaries of the
sensor accuracy; the tracks are declared to belong to the same target and then fused. A
decision of 0 means that the measurements exceed the sensor accuracy, and the tracks are
not fused, thus treating them as separate targets. |

Once track correlation has been established, defuzzification of the membership
values g; results in the selection of the most accurate sensor for tracking. The selected
sensor has the maximum degree of membership (max [£4;]), and the track reported from that
sensor is considered the fused track. The track of the selected sensor is then displayed to the
VTS operator, and the FCM algorithm is repeated for the next set of sensor reports.

This algorithm is more efficient than traditional fusion algorithms because the
algorithm relies on present data and known sensor resolutions. This saves on memory and
on processing time since past information does not have to be retrieved. In addition,
positional estimation is not performed since the algorithm selects the superior sensor for
tracking.

In surhmary, the FCM algorithm for the VTS environment uses decision rules based
upon the magnitudes of the membership values to fuse measurements and select the mést
accurate sensor for tracking. This adaptive strategy is more convenient than conventional
fuzzy association techniques since membership values are compared against each other and
not to fixed membership functions for each attribute. The result is a more efficient and less
computationally complex algorithm to reduce redundant tracks displayed in a MSMT

tracking system.
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VI. SIMULATION

Actual vessel traffic data from VTS Puget Sound and VTS San Francisco were used
to test the algorithm. Overlapping radar coverage scenarios with duplicate target tracks in
both sets of data were extracted for implementation in MATLAB® software. This chapter
discusses the preprocessing of the data, determination of the sensor’s range érror, and the

results obtained from test scenarios.

A. DATA PREPROCESSING

Preprocessing the data from VTS Puget Sound to test the algorithm is accomplished
using the getdatax.m function, previously created for formatting text data into a suitable
matrix form for MATLAB® [3,4]. The code for this function is listed in Appendix B. The
resulting matrix has ten columns; the number of rows is the number of observations. The

columns are:

ObsnMatrix =[ Latitude
Longitude
TrueCourse
Speed
Size
TrackIDNumber
UTC
TrackQuality
TrackStatus
SensorTrackNumber ].

Preprocessing the data from VTS San Francisco required formatting the positional
attributes into matrix form as well. Since tracks were recorded simultaneously in time, the

position elements were extracted as a separate data file:

ObsnMatrix ={ Latitude
Longitude ].
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B. SIMULATION CONSTRUCTION

The goal of this thesis is to fuse redundant target tracks in real-time. As sensor
information is received at the VTC, the fusion process occurs, and the selected sensor track
is displayed to the VTS operator. The fusion process is transparent to the operator and |
continues until the target is no longer in the area of overlapping radar coverage.

In order to achieve real-time fusion and data association, the vessel traffic data is
temporally aligned. The collected data from each VTS contain a time field for each
observation. VTS Puget Sound data contain the UTC in column 2 of each observed track
row. VTS San Francisco data contain the time field in column 3 of each observed track.
Sensor reports observed at time DDMMY Yhhmmss or MM/DD/Y Y-hhmm are compared
and then used in the FCM algorithm. Here is an example of sequenced and paired data for
three observations at time 1109962119:

UNK-4773,110996211940,Radar,772,3,117.2,18.2,4736.42,-12229.03,0,0
SPOKANE_ADS,110996211941,ADS,773,3669994520,98.2,17.5,4736.38,-12229.02,0,0
UNK-4775,110996211945 Radar,774,1,105.6,17.8,4736.44,-12228.80,0,0

In all cases, tracks are aligned to the nearest minute. The attributes from each sensor
report are compared with the attributes of other reports at that time index. With the data
aligned in time, observations are processed as if the data are received in real-time from each

_ S€nsor scan.

C. RANGE RESOLUTION

The range resolution given for each radar type was a percentage of the distance from
the sensor to the tracked target. To factor the sensor’s range resolution into the FCM
algorithm, the distance from the sensor to the target needed to be derived. Since the
positional coordinates of each target were reported in each data set, the range (measured in
nautical miles (NM)) from the known position of the sensor was determined using a
spherical-coordinate calculation. Let ¢ and 6, represent the sensor’s latitude and longitude
coordinates in degrees, and ¢ and 6, represent the target’s latitude and longitude

coordinates in degrees. Using 3443.9 NM as the approximate radius of the earth 7,4 [13],
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the range calculation is as follows [14]:
Range =r, ., arccos(cos@, cos @, cos(t92 —6,)+sing, sing,). (18)

Once the range is determined in nautical miles, the range error of the sensor in degrees is
determined. Given a range resolution of 0.375% (Raytheon radar), at a measured range of
12 NM, the ranger error is determined to be 0.045 NM or 91.14 yards. Because the VTS
data are available in coordinates of latitude and longitude, the range error is expressed in
units of degrees and minutes. Each degree of latitude equals 60 NM; equivalently, one

minute represents one nautical mile. We have

Range Error in degrees Latitude = Range Error in NM + 60. (19)

Because of the oblong curvature of the earth, each degree of longitude results in a
distance equal to or less than 60 NM. At the Equator (00° Latitude), one degree Longitude
represents 60 NM. As we move away from the Equator towards the North or South Pole, a
degree in longitude represents less than 60 NM, proportional to the distance from the
Equator. In the Puget Sound vicinity, one nautical mile equals approximately 1.5 minutes
Longitude. In the San Francisco Bay area, one nautical mile is equal to approximately 1.25
minutes Longitude. The following expressions can be used to convert the range errors from

nautical miles to degrees Longitude:

Range Error in degrees Longitude = Range Error in NM + 40 (Puget Sound), (20)
Range Error in degrees Longitude = Range Error in NM =48 (San Francisco).  (21)

Once the range errors are converted to degrees Latitude and Longitude, they are applied to
the fusion algorithm as the sensor error vector e; for the latitude and longitude attributes

reported in x; (see Chapter V).
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D. NUMERICAL EXAMPLE

The following example illustrates the application of the fusion algorithm presented
in Chapter V to data obtained from the VTS San‘Fraricisco Mare Island and Point San Pablo
sites. This example considers one time scan of two sensors reporting two measurements of
two tracks. Furuno radars are used at these two sites with a known range resolution of 0.9%.
This is a systematic example of how the fusion algorithm is applied to VTS data in the
MATLAB® code. '

1. Similarity Measures and Sensor Accuracy

The algorithm begins with the two sensor sites transmitting the positional
coordinates (latitude and longitude in degrees) of each track to the VTC. Let x; represent

reports from the Mare Island site and x, from the Point San Pablo site:
38.0394 38.0398
X, = x, = .
-122.3408 -122.3403

Using Equation (15), similarity measures d;; and d; are computed to be 0.0007°. The next
step is to find the sensor errors d;; and dp,. .

Because the range resolution of the sensor is given as a percentage, the ranges from
the sensors to the target need to be determined. This is done for each sensor using Equation
(20). For the Mare Island site: ¢ = 38.0717° Latitude, 6, = -122.2508° Longitude (Table
2.2), ¢, = 38.0394° Latitude, and & =-122.3408° Longitude. The calculated range from the
target to the Mare Island site using Equation (18) is 4.6833 NM. Using the positional
coordinates for the Point San Pablo site and the target, the calculated range is 6.3522 NM.

Using Equations (19) and (21), the Mare Island site’s range error is determined to be
0.0007° Latitude and 0.0009° Longitude. The Point San Pablo site’s range error is
calculated to be 0.0010° Latitude and 0.0012° Longitude. The range errors (in degrees) can
now be presented as error vectors e; and e, for the Mare Island sensor and Point San Pablo

sensor, respectively:
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0.0007 00010
e = and e, = |
0.0009 0.0012

Similarity measures of sensors errors dj; and dy; are then calculated by using Equation (15).
The similarity measures of the data and the sensor errors are then placed in the symmetric

matrix D:
Do lef  e-xl)_(dn 4 =[0.0011 0.0007].
v, -x° Jeo) | \du dn) [00007 000152

This matrix provides the elements for the fuzzy membership calculations using the FCM

algorithm.

2. Fuzzy Membership Calculations

The membership values i and 4; for the similarity measures dy and sensor errors
d;; are calculated using Equation (8); a fuzzification constant of m = 2 is used. This results

in a partition matrix with the membership values:

o [Hn ) _[02589 08404
My My | |0.7411 0.1596 [

3. Fuzzy Association

From the partition matrix U, the association is carried out by applying the decision
rule H; from Equation (17) to the membership values of the sensor errors and the similarity
measures of the two tracks. For the Mare Island sensor, H; = 1 (142 > 44;) and for thé Point
San Pablo sensor, H = 1 (41 > Jiz2). |

The decision rule determines that the two tracks are the same, and the sensor with
the highest membership value is selected as the sensor to track the target. In this case, 4 is

selected (1;; > tz2). The superior sensor is the Mare Island radar. The report from Point
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San Pablo is discarded, and the track displayed to the VTS operator is the observed track
from the Mare Island site for this scan. The operator is notified that correlation and fusion
have occurred, and the track is then recorded as the vessel’s path history and archived into

the database. The algorithm resets itself for the next surveillance scan.

E. TESTS

Several test scenarios were applied to the fusion algorithm using MATLAB®
Version 5.3 running on a Windows platform. All scenarios featured overlapping sensor
coverage from multiple sensors, which produced multiple radar tracks. Radar tracks are
plotted béfore and after fusion to demonstrate the effectiveness of the algorithm. Each test

was performed independently using the MATLAB® code listed in Appendix C.

1. VTS Puget Sound Scenarios

Three types of scenarios of overlapping sensor coverage were tested. The first test
involved overlapping coverage of two sensors reporting two tracks with two attributes
(latitude and longitude). The second scenario tested the algorithm with two sensors
reporting two tracks with the addition of a third attribute (course). The third test presented
_ the algorithm with three sensors reporting three tracks with latitude and longitﬁde as
attributes. Each scenario was monitored by the West Point and Pier 36 radar sites. The AIL
FPS-109 radar is used at both sites, with known range and bearing resolutions of 0.375%

and £0.35 degrees, respectively.

a. Two Sensors, Two Tracks, and Two Attributes

The first test involves overlapping radar coverage of tracks 750 and 751.
From observing the data sequenced in time, the tracks are on a northbound course thfough
Puget Sound, approaching the West Point site. Figure 6.1 shows the relative position of the
tracks to the location of the sensors. Sensor 1 is the West Point site, and Sensor 2 is the Pier

36 site. Track 750 is from Sensor 1, and track 751 is reported by Sensor 2.
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Tracks and Sensor Locations
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Figure 6.1. VTS Puget Sound Tracks 750 and 751 with Sensor Sites:
No Fusion Applied

The longitudinal separation between the two tracks was approximately 0.07
nautical milés or 142 yards. The algorithm determined that the two tracks belong to the
same vessel and selected the West Point site as the sensor of choice throughout the duration
of the data set. Figure 6.2.a shows the duplicate tracks before fusion, and Figure 6.2.b
shows the track after fusion. The latter plot is displayed to the VTS operator.
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Displayed Tracks Before Fusion
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Figure 6.2. VTS Puget Sound Tracks 750 and 751, Two Sensors, Two Tracks, and Two
Attributes (latitude and longitude): (a) no fusion applied and (b) fusion applied
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b. Two Sensors, Two Tracks, and Three Attributes

The second test involved overlapping radar coverage of tracks 830 and 831.
Three attributes (latitude, longitude, and bearing) from each sensor were considered.
Bearing resolution was taken into account for the course attribute. Observing the data in
time, the tracks indicate an eastbound course through Elliot Bay towards downtown Seattle.
Figure 6.3 shows the observed data points for these two tracks in relative position to the two
sensors. Sensor 1 is the West Point site, and Sensor 2 is the Pier 36 site; 830 is track 1, and

831 istrack 2. -

Tracks and Sensor Locations
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Flgure 6.3. VTS Puget Sound Tracks 830 and 831 with Sensor Sites:
No Fusion Applied

After applying the algorithm to tracks 830 and 831, the two tracks were
fused to be from one vessel. The selected track was initially determined to be the Sensor 1
track (Track 830) but was handed off to the Sensor 2 track (Track 831) as the vessel
approached Pier 36 radar. The hand off was approximately 3.47 NM from the West Point
site and 2.73 NM from the Pier 36 site. Figure 6.4 shows the tracks before and after fusion.
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Figure 6.4. VTS Puget Sound Tracks 830 and 831, Two Sensors, Two Tracks, Three
Attributes (latitude, longitude, and bearing): (a) no fusion applied and (b) fusion applied
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c. Three Sensors, Three Tracks, and Two Attributes

The third test involved overlapping sensor coverage of tracks 772, 773, and
774. Two tracks were measured using two separate radars. The third track is an ADS track
in which GPS information is given to the VTC by the participating vessel. GPS sensor
resolution is approximately +22.965 yards. Using Equations (39) and (40), the resdlution
was converted from nautical miles to degrees Latitude and Longitude. The tracks indicate
an eastbound course. Figure 6.5 shows the three tracks relative to the location of the Wést

Point site (Sensor 1) and the Pier 36 site (Sensor 2).

Tracks and Sensor Locations
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Figure 6.5. VTS Puget Sound Tracks 772, 773, and 774 with Sensor Sites:
No Fusion Applied

When the fusion algorithm was applied to these tracks, the tracks were fused
to be from the same vessel, and the selected track based on sensor resolution was the ADS
track. At 3.37 NM from West Point and 3.80 NM from Pier 36, however, the ADS track
was swapped for Sensor 2’s track (Pier 36). After two sensor scans, the ADS track resumed
the role of the selected track. An outlying track point from Sensor 1 was selécted for one
scan index; no specific reason could be attributed to this. Figure 6.6 shows the tracks before

and after fusion.

47




Displayed Tracks Before Fusion
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Figure 6.6. VTS Puget Sound Tracks 772, 773, and 774, Three Sensors, Three Tracks, Two
Attributes (latitude and longitude): (a) no fusion applied and (b) fusion applied
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2. VTS San Francisco Scenarios

The most evident area of overlapping radar coverage in VTS San Francisco is the
San Pablo Bay area, monitored by the Mare Island and Point San Pablo radar sites. Several
track scenarios were tested using the algorithm and consistent results of duplicate radar track
fusion were obtained for all data sets. The scenarios were composed of two sensors
reporting two tracks consisting of two attributes (latitude and longitude). Both sensor sites
use the Furuno FR-8050D radar with a known range resolution of 0.9%.

The first scenario involved the vessel SAN JOAQUIN on a southbound course
through the Pinole Shoal and San Pablo Strait channels. SAN JOAQUIN’s path history was
initially tracked by the Mare Island sensor site (Sensor 1). Recorded observations |
commenced once the Point San Pablo sensor detected the target and displayed a duplicate

track. Figure 6.7 shows the observed tracks in relation to the location of the two sensors.

Tracks and Sensor Locations
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Figure 6.7. VTS San Francisco Track SAN JOAQUIN with Sensor Sites:
No Fusion Applied
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Figure 6.8.a shows the displayed tracks before the fusion algorithm was applied.
The two tracks have an approximate longitudinal separation of 0.096 NM or 194 yards.
After applying the fusion algorithm to the data set, the two tracks were fused to be from one
vessel, and the Mare Island sensor was initally selected as the sﬁpen'or sensor. After 5.5
NM from the Mare Island site and 5.5 NM from the Point San Pablo site, the Mare Island
sensor was swapped for the Point San Pablo sensor. The Point San Pablo radar was selected
for the remaining scans as the tracks approached the sensor site. Figure 6.8.b shows the

track displayed to the VTS operator after the fusion algorithm was applied.
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Figure 6.8.a. VTS San Francisco Track SAN JOAQUIN, Two Sensors, Two Tracks, Two
Attributes (latitude and longitude): no fusion applied
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Displayed Tracks After Fusion
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Figure 6.8.b. VTS San Francisco Track SAN JOAQUIN, Two Sensors, Two Tracks, Two
Attributes (latitude and longitude): fusion applied

The next scenario involved the vessel MARIN TWILIGHT on a northbound course
transiting through the same area. The vessel’s path history was initially tracked by the Point
San Pablo site (Sensor 2), and recorded observations commenced once the Mare Island site
(Sensor 1) detected the vessel and displayed a duplicate track. Figure 6.9 shows the
duplicate tracks reported by the two sensors. |
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Tracks and Sensor Locations
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Figure 6.9. VTS San Francisco Track MARIN TWILIGHT with Sensor Sites:
No Fusion Applied

Similar to the SAN JOAQUIN track data, the longitudinal separation between the
MARIN TWILIGHT tracks was approximately 0.096 NM or 194 yards. Figure 6.10.a
shows the duplicate tracks before the fusion process. After applying the algorithm to the
data set, the tracks were fused, and the closest sensor site, Point San Pablo, was selected.
Sensor swapping occurred at approximately 5.3 NM from the Point San Pablo site and 5.6
NM from the Mare Island site. Sensor 2 was selected to track MARIN TWILIGHT for the
remaining scans. Figure 6.10.b shows the fused track displayed to the VTS operator.
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Displayed Tracks Before Fusion
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Figure 6.10. VTS San Francisco Track MARIN TWILIGHT, Two Sensors, Two Tracks,
Two Attributes (latitude and longitude): (a) no fusion applied and (b) fusion applied
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Other similar scenarios from VTS San Francisco were tested with identical results.
The duplicate tracks were fused, and the sensor swap occurred at approximate distances of
5.21t0 5.5 NM away from either sensor site. Range from the target to the sensor site
contributed to the selection of the optimum sensor. Because the data were localized in a
particularly narrow traffic channel, the range at which the optimum sensor was swapped was
nearly the same distance for all scenarios in this region. However, the scenarios proved

useful in demonstrating the effectiveness and adaptability of the fusion algorithm.
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VII. CONCLUSION

This thesis focused on a fuzzy association based fusion algorithm to minimize
duplicate target tracks caused by overlapping sensor coverage, a problem inherent to
multisensor/multitarget (MSMT) tracking systems. The U.S. Coast Guard Vessel Traffic
Service System (VTS) is a MSMT system, where duplicate target tracks are displayed to the
VTS operator in regions of sensor overlap, such as Puget Sound and San Pablo Bay. To
improve the effectiveness of the VTS operator to monitor and manage vessel traffic, a data
fusion algorithm based on fuzzy association was proposed to fuse redundant tracks and
automate the track correlation and sensor selection processes that are currently performed by

VTS operators manually.

A. DISCUSSION OF RESULTS

The proposed fusion algorithm was based on a centralized positional fusion model
using a fuzzy associative technique that uses the Fuzzy Clustering Means (FCM) algorithm.
The fusion algorithm was applied to “real-life” vessel traffic scenarios from USCG VTS
systems and proved effective in fusing duplicate tracks. The algorithm has several
advantages. It required only the present data and sensor resolutions to fuse tracks. It did not
require data from previous scans to fuse redundant tracks. The algorithm also handled
varying numbers of measurements, sensors, and attributes, which made it applicable to
sparse as well as dense traffic environments. Membership values were computed from
present data and the resolutions of the sensors, which resulted in data adaptive calculation
for each sensor scan. The algorithm also required considérably fewer IF-THEN rules since
measurement-to-measurement association was performed by searching for the highest
membership value in the partition matrix, rather than applying linguistic variables and
predetermined thresholds for associating each measurement. The fusion of duplicate tracks
was accomplished by selecting the most accurate sensor, eliminating the need for computing
a composite or fused estimate. In the scenarios tested, the most accurate sensor was

selected, and duplicate tracks were reduced.
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B. SUGGESTIONS FOR FURTHER STUDY

The findings in this study provide a solution to the overlapping sensor coverage
problem and are not entirely conclusive. Further studies need to be done to test and enhance

the performance of the proposed algorithm.

1. Additional Attributes

The data collected from VTS San Francisco were limited to the latitude and
longitude attributes. Additional attributes such as course and speed can be obtained from
the VTS and integrated into the fusion algorithm. Adding attributes to the fusion algorithm
has proven to be non-detrimental to the performance of the algorithm and easily
incorporated by the FCM algorithm. In addition, sensor resolutions would have to be

determined for each these new attributes.

2. Complex Scenarios

The scenarios presented in this study were typical traffic patterns encountered at
VTS systems. The two track and two sensor scenario is the most common redundant target
situation VTS operators experience. Further testing of the algorithm in more complex
scenarios is necessary to prove its effectiveness and accuracy in correlating the multiple
tracks to multiple sensors. Complex data sets such as overlapping sensor coverage of
multiple vessels in crossing or overtaking situations or break-offs of vessels-in-tow provide
a challenge to the fusion algorithm. Data sets can be computer generated for simulétion or
collected from different VTS systems. The latter set would provide more realistic results;
however, coordination among several VTS systems would be required in order to observe

and record these rare but complex situations.

3. Verification of the Proposed Algorithm

The proposed algorithm is able to correlate and fuse multiple tracks with “real-life”
traffic data in simulated real-time. A step in advancing this algorithm is to implement it at

an operational VTC, a system with real-time track measurements, and test its efficiency in
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correlating and fusing redundant tracks on site. Since the algorithm resides between the
track database manager (Tbdm) and the operator’s display console, a stand-alone PC
running the algorithm may process sensor information in parallel with the database and
operator display processors in a non-intrusive manner. Further work would be required to

encode the algorithm into the current VTS software.
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APPENDIX A. VTS SAN FRANCISCO TRACK STATUS CODES

The following codes are used at VTS San Francisco to identify the status of observed tracks:

DT  Drop tow

&

Pickup two

TR  Track Start Radar

TS  Track Start Standard Route
RL  Radar Lost

RC  Radar Coast

RR  Radar to Radar Transfer
SR  Standard Route to Radar
RS  Radar to Standard Route
AL  Alarms

OU  Operator Update

H Handoff

SU  System Update

SS Standard Route to Standard Route
LS Lost to Standard Route

L | Lost Track

C Correlated Track .

DC  Decorrelated Track

F Fuse

DF  De-Fuse

TM  Track Start Manual
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AS

MS

SA

SM

TC

TA

AIS to Manual

AIS to Standard Route
Manual to AIS

Manual to Radar

Manual to Standard Route
Radar to Manual Transfer
Standard Route to AIS
Standard Route to Manual
Track Start Fused

Track Start Correlated

Track Start AIS
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APPENDIX B. DATA CAPTURE ALGORITHM

%DATA CAPTURE ALGORITHM

%getdatax.m

%THIS FUNCTION TAKES IN DATA SUPPLIED BY THE USCG AND PUTS IT IN A
%FORMAT THAT CAN BE USED BY THE FUSION ALGORITHM. THE OUTPUT IS
AN %OBSERVATION MATRIX WHICH SIMULATES THE TDBM.

BVesselName ="’ % % 26 spaces for padding
%BTrackStatus =’ %% 5 spaces for padding
% Initialize Storage vectors

VesselName = [];
UTC=[];
TrackStatus = [];
TrackIDNumber = [];
SensorTrackNumber = [];
TrueCourse = [];
Speed = [J;

Latitude = [];
Longitude =[];

Size =[];
TrackQuality = [];

filename = input(Enter file name » ','s");

Yo -------==memnn Start reading the file -------------

fid = fopen(filename,'r); % Read only

st = fgets(fid); % Get first line

while st ~=[-11]; % Check for end-of-file N = 1:10
Cloc = findstr(st,',"); % Finds delimiter |

VesselName= [VesselName; st(1:Cloc(1)-1),BVesselName(1:26-length(st(1:Cloc(1)-1)))];

UTC = [UTC; str2num(st(Cloc(1)+1:Cloc(2)-1))];
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TrackStatus = [TrackStatus; str2num(st(Cloc(2)+1:Cloc(3)-1))];
%BTrackStatus(1 :5-1ength(st(Cloc(2)+1:Cloc(3)-1)))] ;

TrackIDNumber = [TrackIDNumber; str2num(st(Cloc(3)+1:Cloc(4)-1))1;
SensorTrackNumber =[SensorTrackNumber;str2num(st(Cloc(4)+1:Cloc(5)-1))];
TrueCourse = [TrueCourse; str2num(st(Cloc(5)+1:Cloc(6)-1))];

Speed = [Speed; str2num(st(Cloc(6)+1 :Clo‘c(7)-1))];

Latitude = [Latitude; str2num(st(Cloc(7)+1:Cloc(8)-1))];

Longitude = [Longitude; str2num(st(Cloc(8)+1:Cloc(‘9)—1))];

Size = [Size; str2num(st(Cloc(9)+1:Cloc(10)-1))];

TrackQuality = [TrackQuality; str2num(st(Cloc(10)+1:Cloc(10)+2))];

st = fgets(fid);
end .

% BUILD DATA BASE OF ALL OBSERVATIONS PRESENT IN TDBM

ObsnMatrix=[Latitude Longitude TrueCourse Speed Size TrackIDNumber UTC
TrackQuality TrackStatus SensorTrackNumber];
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APPENDIX C. FUZZY CLUSTERING MEANS ALGORITHM CODE

%0 %0 %o To o T To %o To To To To o To To To To Fo Fo Fo
%% %o vtsOl.m %% %o
%0 % %o Tracks 830 & 831 %%% (830831test.dat)
%%% Puget Sound 1996 Data %%%
%% %o FCM Algorithm %o % %o
0% %o %o To %o Fo To T To To To To To To To To Fo o Fo

%%% Created by: LTJG E.S. Anzano and Major Ashraf M. Aziz %% %
%% %o May 1999 % %%

%%% Algorithm Developed By: Major Ashraf M. Aziz =~ %%%
%% getdatax function gets ASCII dataset

clear all
getdatax %% "830831test.dat"

obs=ObsnMatrix;
%% % %o %o Yo %o To o Yo Yo Yo Yo To To o Yo Yo o To o To Yo o Yo To o Yo Yo To Yo To To Vo To Yo

nsamples=96;

c1=0; % counter for correct correlation
for kk=1:nsamples % kk the index of the sample (TIME or nsamples)
kk1=Kk;

kk2=kk1+109;

- zobsx1=obs(kkl1,1)*1e-2;
zobsx2=o0bs(kk2,1)*1e-2;
zobsyl=obs(kk1,2)*1e-2;
zobsy2=obs(kk2,2)*1e-2;
zobszl=obs(kk1,3);

zobsz2=o0bs(kk2,3);

x1minutes = (zobsx1-47)*1e2/60; %Conversion of minutes to degrees
x2minutes = (zobsx2-47)*1e2/60;

ylminutes = abs((zobsy1+122)*1e2/60);

y2minutes = abs((zobsy2+122)*1e2/60);

zobsx1 =47 + x1minutes; %Adding converted minutes to degrees
zobsx2 = 47 + x2minutes;

zobsyl = -(122 + ylminutes);

zobsy2 = -(122 + y2minutes);
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%% % Calculate distance vector from Radar station to target
R =3443.9; %% % radius of Earth in Nautical Miles

% %% West Point Radar
WPobs = [47.66222; -122.432777];

phil = WPobs(1,1)*pi/180; %%convert to radians
phi2 = zobsx1*pi/180;

thetal = WPobs(2,1)*pi/180;

theta2 = zobsy1*pi/180;

AOBI = acos(cos(phil)*cos(phi2)*cos(theta2-thetal)+sin(phil)*sin(phi2));
D1=R*AO0OB1; %% distance from West Point Radar to Target in Nautical Miles

%%% Pier 36 Radar
P36Pobs = [47.59; -122.3494445];

phi3 =P36Pobs(1,1)*pi/180;
phi4 = zobsx2*pi/180;

theta3 = P36Pobs(2,1)*pi/180;
thetad = zobsy2*pi/180;

AOB2 = acos(cos(phi3)*cos(phi4)*cos(thetad-theta3)+sin(phi3)*sin(phi4));
D2 =R*A0B2; %% distance from P36 Radar to Target in Nautical Miles

distance = [D1 D2; D1 D2] % Range from targets to sensors
zobs(:,1)=[zobsx1;zobsyl;zobsz1];
zobs(:,2)=[zobsx2;zobsy2;zobsz2];

track1x(kk)=zobsx1;
track1y(kk)=zobsyl;
track2x(kk)=zobsx2;
track2y(kk)=zobsy?2; -

To %o o %o ToTo o To To %o %o To To To To To To To To To To To To To To To To To To To To To o %o To Fo o o %o Yo %o %o %o

n=2; Z%number of reported tracks
m=3; % number of attributes
mm=1; % factor of the resolution (from 1 to 3)

rres = 0.00375*abs(distance).*[1/60 1.25/60; 1/60 1.25/60]; %Resolution Lat/Long degree

bres = [0.35; 0.35] %Bearing resolution
res = [rres bres]; %in degrees decimal
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%o %0 %o %o %o To %o %o To T Fo To To To To To To To Yo Fo To T To o To To o To Fo To To To Fo To Fo To o Fo To o Fo o To
% Similarity Measures and Sensor Error Calculations
Yo% Yo %o %o To To T To T To To To To %o To Yo Fo To To To o To To To To o To To To To Fo To To To Fo To To To Yo Fo Yo To

fori=1:n

forj=1:mn

if j==i

dd=res(:,i);

else
dd=zobs(:,i)-zobs(:,j);
end

d(i,j)=sqrt(dd*dd); % d will be a symmetric matrix
end
end

%0 % %o %o o Yo %o Yo %o To Yo To To To Yo Yo To Yo Yo o To To To To Fo Fo Yo Yo To Vo To To To Yo Yo Fo To Yo Yo Yo To Yo To
% Membership Value Calculation

%% %0 To To %o Yo Yo %o Yo %o Yo Yo To Yo Yo To T To To Fo Yo To To Yo To To o Fo To o Fo To To To To To T Yo Yo Yo To %o
% m is the deffuzification constant, 1 < m <infinity

m=3;
fori=1:n

for k=1:n
cc=0;
forj=1:n
temp1=(d(i,k)/d(j,k))(2/(m-1));
cc=templ+cc;
end
ures(i,k)=1/cc;
end

end

%ures
%% %0 %o %o %o %o To %o %o To To Yo Yo To To To o To To To To To To o To To To To To Yo Yo To o To o To Fo To Fo Fo Yo Yo

% Finding the optimum sensor (maximum grade, i.e. high resolution)
%% %o %o %o To To %o To To To Yo To T Fo o To To To To To To To To To Fo To Yo o To To To o To To To o To o To Fo %o Yo

fori=1:n
ss(i)=ures(i,i);
end

[Y.J]=sort(ss); %ascending order

fori=1:n
opts(i)=I(n-i+1);
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end
o0pts % gives the priority when two tracks are same

%o %o %o %o T To To %o To To To To To To %o To Fo o %o %o %o To To To %o %o %o To %o %o Yo %o To %o %o To % %o %o %
% Comparison with horizontal thresholds
%o %o %o %o To T To To To Fo o To To To %o %o o To Fo To %o To o %o To o To To %o To %o %o %o To %o %o %o %o % %o

fori=1:n

for j=1:n
udiff(i,j)=(ures(i,j)-ures(i,i));
if udiff(i,j)>=0

u(i,j=1;

else

u(i,j)=0;

end

end
end

%o %0 %o %o To %o To To To To To To o To To To o To To To To To To %o To To To To To %o %o %o %o %o To To %o To %o %o %o %o To
% Comparison with vertical thresholds
To o %0 %o %o T To To To To To To o To To %o Yo To To To To To o %o To o To To o To To % %o To Yo Yo T Yo %o Yo To %o %o

fori=1:n

for j=1:n
udiff(j,i)=(ures(,i)-ures(,i)); .
if udiff(j,i)>=0

uv(j,i)=1;

else

uv(j,i)=0;

end

end
end

Jouv
o0 %o %o Yo o To %o To Yo Yo Yo %o To To To T Fo To %o %o o To To To To To Yo %o Fo Yo % %o %o To o To %o To T %o % %o

uf=zeros([n,n]);
fori=1:n
for j=1:n
if u@i,j)=—=1
if u(j,i)==
if uv(i,j)==1
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if uv(j,i)==1
uf(i,j)=1;
uf(j,i)=1;
end

end

end

end

end

end

%% % %Put zeros in the diagonal elements% % % % % % % Jo %o To % To %o T %o

fori=1:n

uf(i,i)=0;

end

decision=uf ; % final decision
Jopause

%% %o %o %o %o Yo %o To %o To To To To To To T To T To To To To Yo Yo o To To To To o To To Yo To To To To To To Fo To o
% Calculation of the number of the correct removing the

% redundant tracks
%% % %o % Yo %o T %o %o Yo Yo %o %o %o %o % To T Fo To To To o Yo To To To Jo Yo To To To To Yo Vo Fo Yo Yo Yo Jo To Vo

fori=1:n

zx=0;

for j=1:n

if j==i

%nothing to do

else
zx=zx+decision(i,j);
end % if
end - % forj

if i==

if zx==1

cl=cl+1;

end

end

end %for i

%pause
%end % END FOR KK
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ToPoTo To To T To %o To To To To T T To Fo %o o Fo %o %o %o %o To To To To %o %o %o %o To To %o %o To To %o % % %o %o %o
% Calculation of the percentage of the correct removing the redundant tracks
P00 %o %o %o %o %o o To %o To o To To T o To o To %o T To % %o %o %o % %o %o To %o To % %o %o To %o %o %o % %o % %o

pcl=(c1/nsamples)*100;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determination of the optimum track
%o %0 %0 %o %o To To %o o To %o %o To To To To To To o %o %o To %o To o To %o %o %o T To %o %o T %o Yo o %o %o %o %o %o %

if opts(1)==1
trackxf(kk)=track1x(kk);
trackyf(kk)=track1y(kk);
optimumtrack = ’sensor 1’

elseif opts(1)~=1
trackxf(kk)=track2x(kk);
trackyf(kk)=track2y(kk);
optimumtrack = sensor 2’

end

%o o To o To %o To To %o To T To To %o To To o To %o Fo %o To o %o To To To %o %o %o To %o To To %o To %o %o To o %o %o
% Plotting the results '

To %o %0 o To e To %o %o %o %o To To T To o To %o To To To To To To To o To To To %o %o Yo Yo To %o Yo To %o To %o %o %o
% 1- Reported tracks

oo o To %o Yo To Yo To Yo %o Yo %o %o To Yo % To To Yo %o Yo

figure(1)
plot(trackyf,trackxf, 1s);

xlabel(’Lbngitude ddd.dd’),ylabel('Latitude dd.dd’)
title(’Fig. 2 Displayed Tracks After Fusion ’);

ymax = ceil(10*max(obs(:,1)))/1e3;
ymin = floor(10*min(obs(:,1)))/1e3;
xmax = floor(10*min(obs(:,2)))/1e3;
xmin = ceil(10*max(obs(:,2)))/1e3;

ymaxminutes = (ymax-47)*1e2/60;
yminminutes = (ymin-47)*1e2/60;
Xmaxminutes = abs((xmax+122)*1e2/60);
xminminutes = abs((xmin+122)*1e2/60);

ymax =47 + ymaxminutes;
ymin = 47 + yminminutes;
xmax = -(122 + xmaxminutes);
xmin = -(122 + xminminutes);
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axis([xmax xmin ymin ymax])
legend(‘optimum track’, 4)

figure(2)
plot(trackly,tracklx,”™’...
track2y,track2x,p?;

xlabel(Longitude ddd.dd’),ylabel(Latitude dd.dd’)
title(’ Fig. 1 Displayed Tracks Before Fusion );
axis([xmax xmin ymin ymax])

legend(’sensor 1 track’, ’sensor 2 track’, 4) -

% 3- Final tracks
% %0 % %0 %o %o %o Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo

figure(3),

plot(trackly,track1x,”’, ...
track2y,track2x,p’,...
trackyf,trackxf,’s’....
WPobs(2,1),WPobs(1,1),bh’,...
P36Pobs(2,1),P36Pobs(1,1),’gh’);

title(’ Fig. 3 Displayed Tracks After Fusion );
xlabel(’Longitude ddd.dd’),ylabel(’Latitude dd.dd’)
legend(’sensor 1 track’, ’ ’

9,

sensor 2’,1)

3,

sensor 2 track’, ‘optimum track’, sensor 1,

end
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